Inscribing Baire-nonmeasurable sets

Szymon Żeberski Wrocław University of Technology

Winter School in Abstract Analysis, Hejnice 2010

- T uncountable Polish space,
- $\mathbb I$ a $\sigma\text{-ideal}$ of subsets of $\mathcal T$ with Borel base.

Definition

Let $N \subseteq X \subseteq T$. We say that the set N is *completely* \mathbb{I} *-nonmeasurable* in X if

 $(\forall A \in \operatorname{Borel})(A \cap X \notin \mathbb{I} \to (A \cap N \notin \mathbb{I}) \land (A \cap (X \setminus N) \notin \mathbb{I})).$

Remark

- ▶ $N \subseteq \mathbb{R}$ is completely L-nonmeasurable if $\lambda_*(N) = 0$ and $\lambda_*(\mathbb{R} \setminus N) = 0$.
- ► The definition of completely K-nonmeasurability is equivalent to the definition of completely Baire-nonmeasurability.
- ▶ *N* is completely $[\mathbb{R}]^{\omega}$ -nonmeasurable iff *N* is a Bernstein set.

Definition

The ideal $\mathbb{I} \subseteq P(T)$ have the hole property if for every set $A \subseteq T$ there is a \mathbb{I} -minimal Borel set B containing A i.e. $B \setminus A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$. In such case we will write

$$[A]_{\mathbb{I}} = B$$
 and $]A[_{\mathbb{I}} = T \setminus [T \setminus A]_{\mathbb{I}}.$

Remark Every c.c.c. σ -ideal with Borel base have the hole property.

Remark *N* is completely I-nonmeasurable in *X* iff

$$[N]_{\mathbb{I}} = [X]_{\mathbb{I}}$$
 and $]N[_{\mathbb{I}} = \emptyset$.

Remark

Every c.c.c. σ -ideal with Borel base have the hole property.

Remark

N is completely \mathbb{I} -nonmeasurable in X iff

$$[N]_{\mathbb{I}} = [X]_{\mathbb{I}}$$
 and $]N[_{\mathbb{I}} = \emptyset$.

- T uncountable Polish space,
- $\mathbb K$ the ideal of meager sets.

Theorem (Cichoń, Morayne, Rałowski, Ryll-Nardzewski, Ż, 2007)

Let $\mathcal{A} \subseteq \mathbb{K}$ be a partition of a subset of T. Then we can find a subfamily $\mathcal{B} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{B}$ is completely \mathbb{K} -nonmeasurable in $\bigcup \mathcal{A}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Gitik, Shelah 2001)

Let $(A_n : n \in \omega)$ be a sequence of subsets of \mathbb{R} . Then we can find a sequence $(B_n : n \in \omega)$ such that

1.
$$B_n \cap B_m = \emptyset$$
 for $n \neq m$,

$$2. \quad B_n \subseteq A_n,$$

3. $\lambda^*(A_n) = \lambda^*(B_n)$, where λ^* is outer Lebesgue measure.

Assume that $\mathcal{A} \subseteq \mathbb{K}$ is a partition of T. Let $\mathcal{A}_n \subseteq \mathcal{A}$ for $n \in \omega$. Then there exists $\mathcal{B}_n \subseteq \mathcal{A}_n$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$\mathcal{B}_n \cap \mathcal{B}_m = \emptyset$$
 for $n \neq m$,

2.
$$\mathcal{B}_n \subseteq \mathcal{A}_n$$
,

3.
$$[\bigcup \mathcal{B}_n]_{\mathbb{K}} = [\bigcup \mathcal{A}_n]_{\mathbb{K}}.$$

Assume that $A \subseteq \mathbb{K}$ is a partition of a subset of T and $\bigcup A \notin \mathbb{K}$. Let $A_n \subseteq A$ for $n \in \omega$. Then there exists $B \subseteq A$ such that

1. $\bigcup \mathcal{B} \notin \mathbb{K}$, 2. $] \bigcup \mathcal{B} \cap \bigcup \mathcal{A}_n[_{\mathbb{K}} = \emptyset \text{ for every } n \in \omega$.

Theorem (Gitik, Shelah, 1989) If I is a σ -ideal on κ , then $P(\kappa)/I$ is not isomorphic to the Cohen algebra.

Assume that $\mathcal{A} \subseteq \mathbb{K}$ is a partition of a subset of T. Let $\mathcal{A}_n \subseteq \mathcal{A}$ for $n \in \omega$. Then there exists $\mathcal{B} \subseteq \mathcal{A}$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$[\bigcup \mathcal{B}]_{\mathbb{K}} = [\bigcup \mathcal{A}]_{\mathbb{K}},$$

2.]
$$\bigcup \mathcal{B} \cap \bigcup \mathcal{A}_n[_{\mathbb{K}} = \emptyset \text{ for every } n \in \omega.$$

Theorem (Alaoglu, Erdös, 1950) For every cardinal κ

$$((\kappa \colon \omega, \omega_1) \to \omega_1) \leftrightarrow ((\kappa \colon 1, \omega_1) \to \omega_1).$$

Lemma

Assume that $\{I_n\}_{n \in \omega}$ is a family of σ -additive ideals on κ which are not c.c.c. Then there exists a family $\{X_\alpha\}_{\alpha < \omega_1} \subseteq P(\kappa)$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1.
$$(\forall \alpha < \omega_1)(\forall n \in \omega)(X_\alpha \notin I_n)$$

2.
$$(\forall \alpha, \beta < \omega_1)(\alpha \neq \beta \rightarrow X_\alpha \cap X_\beta = \emptyset).$$

Assume that $\mathcal{A} \subseteq \mathbb{K}$ is a partition of T. Let $\mathcal{A}_n \subseteq \mathcal{A}$ for $n \in \omega$. Then there exists $\mathcal{B}_n \subseteq \mathcal{A}_n$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$\mathcal{B}_n \cap \mathcal{B}_m = \emptyset$$
 for $n \neq m$,

2.
$$\mathcal{B}_n \subseteq \mathcal{A}_n$$
,

3.
$$[\bigcup \mathcal{B}_n]_{\mathbb{K}} = [\bigcup \mathcal{A}_n]_{\mathbb{K}}.$$

Thank You for Your Attention

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- J. CICHOŃ, M. MORAYNE, R. RAŁOWSKI, C. RYLL-NARDZEWSKI, S. ŻEBERSKI, On nonmeasurable unions, Topology and its Applications 154 (2007), 884-893,
- P. ERDÖS, Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950), 127-141,
- M. GITIK, S. SHELAH, More on real-valued measurable cardinals and forcings with ideals, Israel Journal of Mathematics 124 (1), (2001), 221-242,
- M. GITIK, S. SHELAH, Forcing with ideals and simple forcing notions, Israel J. Math. **62** (1989), 129-160,
- A. TAYLOR, On saturated sets of ideals and Ulam's problem, Fund. Math. **109** (1980), 37-53.